Communication: Non-additivity of van der Waals interactions between nanostructures.
نویسندگان
چکیده
Due to size-dependent non-additivity, the van der Waals interaction (vdW) between nanostructures remains elusive. Here we first develop a model dynamic multipole polarizability for an inhomogeneous system that allows for a cavity. The model recovers the exact zero- and high-frequency limits and respects the paradigms of condensed matter physics (slowly varying density) and quantum chemistry (one- and two-electron densities). We find that the model can generate accurate vdW coefficients for both spherical and non-spherical clusters, with an overall mean absolute relative error of 4%, without any fitting. Based on this model, we study the non-additivity of vdW interactions. We find that there is strong non-additivity of vdW interactions between nanostructures, arising from electron delocalization, inequivalent contributions of atoms, and non-additive many-body interactions. Furthermore, we find that the non-additivity can have increasing size dependence as well as decreasing size dependence with cluster size.
منابع مشابه
Modeling of the intermolecular Force-Induced Adhesion in Freestanding Nanostructures Made of Nano-beams
Among the intermolecular interactions, the Casimir and van der Waals forces are the most important forces that highly affect the behavior of nanostructures. This paper studies the effect of such forces on the adhesion of cantilever freestanding nanostructures. The nanostructures are made of a freestanding nano-beam which is suspended between two upper and lower conductive surfaces. The linear s...
متن کاملDetermination of the Second Virial Coefficient for Binary Mixtures of Ar with CH4 and CO using Van der Waals and Dieterici Models
In this paper, we calculate the second virial coefficient for binary mixtures of Ar with CH4 and CO in order to evaluate the performance of equations of state (EOSs). The investigated EOSs are van der Waals (vdW), Redlich-Kwong (RK), Peng-Robinson (PR), Carnahan-Starling–van der Waals (CS-vdW) and Guggenheim-van der Waals (G-vdW) based on van der Waals model. In our work, we also use Dieterici ...
متن کاملVolumetric properties of high temperature, high pressure supercritical fluids from improved van der Waals equation of state
In the present work, a modified equation of state has been presented for the calculation of volumetric properties of supercritical fluids. The equation of state is van der Waals basis with temperature and density-dependent parameters. This equation of state has been applied for predicting the volumetric properties of fluids. The densities of fluids were calculated from the new equation of state...
متن کاملA Modified van der Waals Mixture Theory for Associating Fluids: Application to Ternary Aqueous Mixtures
In this study a simple and general chemical association theory is introduced. The concept of infinite equilibrium model is re-examined and true mole fractions of associated species are calculated. The theory is applied to derive the distribution function of associated species. As a severe test the application of presented theory to the van der Waals mixture model is introduced in order to p...
متن کاملInvestigation of Thermodynamic Consistency Test of Carbon Dioxide (CO2) in Room-Temperature Ionic liquids using Generic van der Waals Equation of State
Thermodynamic consistency test of isothermal vapor-liquid equilibrium (VLE) data of various binary systems containing Carbon dioxide (CO2)/Room temperature ionic liquids (RTILs) have been investigated in wide ranges of pressures in each isotherm precisely. In this paper Generic van der Waals (GvdW) equation of state (EoS) coupled with modified van der Waals Berthelot mixing rule has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 141 14 شماره
صفحات -
تاریخ انتشار 2014